14 Jan. 2014

1. Explain the difference between thermodynamics and kinetics.

2. Name 4 properties that affect the rate of reaction of homogenous mixtures.

- Properties of Ractunts i products
- Concentration
- temperature - how
- Catalyst - had

3. Calculate the Av. Speed of the following reaction $A+B \rightarrow A B$ from 0 to 2 seconds and 2 to 4 seconds.

Change in Concentration of A

Time (s)	Concentration $(\mathrm{M} / \mathrm{s})$	$10-8$ $0-2$ 2
0	10	
2	8	
4	4	$\frac{2}{2}=-1$
$2-4$	$=\frac{4}{-2}=-2$	

*4. True or False: Would using the concentration change of AB per second result in the same reaction rate.
Yous, bat the onsimar would be positive

* 5. Write the rate formula for each species in the following reaction (write it in the way that the rate of the reaction does not depend on which species we measured): $8 \mathrm{Fe}+\mathrm{S}_{8} \rightarrow \mathrm{FeS}_{8} \quad$ ex. For species S , rate formula is rate $=\Delta\left[\mathrm{S}_{3}\right] / \Delta \mathrm{t}$.

$$
\text { nate }=\frac{\Delta\left[F_{e}\right]}{8 \Delta t}=\frac{\Delta\left[S_{8}\right]}{\Delta t}=\frac{\Delta\left[F_{2} S_{8}\right]}{\Delta t}
$$

*6. What is the Units of K for the following reaction? What's the order?
Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{\mathrm{P}}$

$$
K \text { units is } \frac{1}{\text { conc. time }}
$$

order is 2
7. Use the Data from the table to determine the rate law expression.

$$
2 A+B \rightarrow P
$$

Experiment	$[\mathrm{A}]$	$[\mathrm{B}]$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	.2	.1	$2^{* 10^{2}}$
2	.2	.2	$4^{* 10^{-2}}$
3	.3	.5	$3^{*} 10^{-2}$
4	.4	.1	$2^{*} 10^{-2}$

$$
R_{a t e}=k[B]
$$

b. Using experiment 1 , find k .

$$
\begin{array}{r}
2 \times 10^{-2}=k[.1] \\
k=.2
\end{array}
$$

c. True or False. If $1 /[B]$ is graphed as a function of time (t on x-axis), the graph would be linear.

False, the ruction is fist weer. you need to In it.
d. Find concentration of B at $t=2$ if initial concentration of B is 2 .

$$
\begin{array}{rl}
\ln [B]_{1}= & -k t+\ln \left[B_{0}\right] \\
& (-.2)(2)+\ln (2) \\
& . .4+.6931 \\
\ln [B]_{t} & =.293 \\
e & e \\
{[B]_{t}} & =1.341
\end{array}
$$

