

SI Session 3
Jan. 21, 2014

1. Write the formula for the Arrhenius equation. What happens as T increases?

$$
K=A e^{-\varepsilon a / R T} \quad K \text { inarooes ant thus rato mereases }
$$

$\begin{array}{ll}T_{1} & T_{2}\end{array}$
2. A reaction is 10 times faster at 40 C than at 25 C . Find the Ea of the reaction? Note R is $8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$.
$\ln \left(\frac{x_{1}}{K_{2}}\right)=\frac{\varepsilon a}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\left.\ln \left(\frac{10}{1}\right)=\frac{\varepsilon a}{3.314}\left(\frac{1}{(25}+\frac{1}{272}\right)-\frac{1}{(40}\right)$
95941.05
3. The rate constant at ${ }^{\top} 25 \mathrm{C}$ is $2 \mathrm{E}-2$. Ea is $10 \mathrm{kj} / \mathrm{mol}$. What is the rate constant at 35

C?

$$
\ln \left(\frac{2 \times 1 b^{-2}}{k_{2}}\right)=\frac{10,000}{8.314}\left(\frac{1}{(35}\left(\begin{array}{l}
2+3
\end{array}\right)-\frac{1}{\binom{255}{223}}\right)
$$

4. Why do catalyst increase the rate of reaction?

> than decode Ea needed
b. True or False: Transition state is higher energy than the reactant and product True
5. Explain the difference between the kinetic product and the thermodynamic product. Which is most likely to be prevalent at low temperature in a short time

kine tic poser hos a lowers activation event so it forms fast especially at law tome.
thamodunomic product has a higher activation cony, but is mores stable. This, it is fans's at high temp when there is surfficiont over in the system.
6. cis-butenedioic acid \rightarrow trans-butenedioic acid. Predict the rate law.

$$
\text { Rato }=k[\text { cis-butoredioic acid }]
$$

7. Write the overall reaction equation using the elementary steps below. List the intermediates. Predict the rate law.

$$
\begin{array}{ll}
N \sigma_{2}+N \mathrm{NO}_{2}-\mathrm{NO}+\mathrm{NO}_{3} & \text { (slow) } \\
\mathrm{N} \sigma_{3}+\mathrm{CO}->\mathrm{N} \varnothing_{2}+\mathrm{CO}_{2} & \text { (fast) }
\end{array} \quad \text { intermediates: } N \mathrm{O}_{3}
$$

oval: $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
Rat law: a ate $=k\left[\mathrm{NO}_{2}\right]^{2}$
8. Write the overall reaction equation using the elementary steps below. List the intermediates. Predict the rate law.

$$
\begin{array}{lc}
2 \mathrm{NO}<-\ldots-\mathrm{N}_{2} \varnothing_{2} & \text { (fast step) } \\
\mathrm{N}_{2} \varnothing_{2}+\mathrm{O}_{2} \ldots 2 \mathrm{NO}_{2} & \text { (slow step) }
\end{array}
$$

craal: $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
3 Reachoris

$$
\begin{aligned}
& 2 \mathrm{NO} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2} \\
& K_{1}\left[N_{0}\right]^{2} \\
& \mathrm{~N}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO} k_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right] \text { most be equal } \mathrm{k}_{1}[\mathrm{NO}]^{2}=k_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right] \\
& \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~K}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right] \\
& \text { Rate }=k_{2}\left[\frac{k_{1}}{k_{-1}}[N O]^{2}\right]\left[\begin{array}{l}
\vdots \\
O_{2}
\end{array}\right] \\
& \text { Rate }=K_{\text {iss }}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\
& k_{\text {one }}=\frac{k_{2} k_{1}}{k_{-1}}
\end{aligned}
$$

