

CH 117 Session 5
January 31, 2014
*Note that the Equil. Constant and numbers used in the questions for this exercise were made up.

1. Write the equilibrium expression for the following reactions:
$\mathrm{N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH} 3(\mathrm{~g})$

$$
k=\frac{\left[\mathrm{CH}_{3} \mathrm{CHOO}\right)\left(\mathrm{H}_{3}{ }^{\mathrm{o}}\right] \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{H}_{3} \mathrm{O}^{+}}{\left[\mathrm{CH}_{3}(\mathrm{OOH}]\right.}
$$

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
k=\left[\mathrm{CO}_{2}\right]
$$

2. For the reaction, $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{K}_{\text {eq }}$ is $1.45 \mathrm{E}^{-3}$. What would the $\mathrm{K}_{\text {eq }}$. be for $2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$.

$$
\left(1.45 \times 10^{-3}\right)^{2}
$$

b. What would the $\mathrm{K}_{\text {eq }}$ be for $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g})$.

$$
\frac{1}{\left(1.45 \times 10^{-3}\right)^{2}}
$$

3. For the reaction $\mathrm{N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}$ is $4^{*} 10^{5}$. Find K_{p} at 400 C . 673
b. Under what conditions would $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$

When mules of gas on both
sides are equal
4. True or False: When Kc is greater than 1, reaction is product favored.
True
b. When Qc > Kc, the reaction will shift in which direction.
night
5. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})<-->2 \mathrm{NH}_{3}(\mathrm{~g})$. At equilibrium there contains 1.5 moles of $\mathrm{N}_{2}, 2$ moles of H_{2}, and 3 moles of NH_{3} in a 1.5L container. Find K_{c}.

$$
\begin{aligned}
& \frac{3}{1.5}=2 \\
& \frac{1.5}{1.5}=1 \quad \frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}=133
\end{aligned}
$$

6. Suppose you mix 1 M of CO and 1 M of H_{2} together. What would the equilibrium

unless you
rave a paphigy aleciator concentration of all reactant and product be?

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \underset{\oplus}{\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}} \text { is } 1.45 \mathrm{E}^{-2} .}
$$

Ans: $\quad .967 \quad .922 \quad .014$
7. Consider the following reaction. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH} \mathrm{K}_{\mathrm{c}}=3.01^{*} 10^{-4}$

If you started with 1 M of $\mathrm{CO}, 1 \mathrm{M}$ of H_{2}, and 1 M of $\mathrm{CH}_{3} \mathrm{OH}$, which direction would the reaction shift? Would the conc. of H_{2} be greater than 1 M ?

$$
\frac{\left[\mathrm{CH}_{3}, 0+\right]}{\left[\mathrm{H}_{2}{ }^{2}[10]\right.}=Q=\frac{1}{[1]^{2}[1]^{[1}}=1
$$

$Q>K_{c}$
reaction shits left

Yes, since you started with IM of H_{2} and the reaction shifts left, $\left[H_{2}\right]$ will increase
8. Consider the reaction $2 \mathrm{~N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH} 3$. What happens to $\mathrm{K}_{\text {eq }}$ when the conc. of NH_{3} is decreased?

Nothing, $K_{\text {eq }}$ only changes due to temp changes
b. Which way doe the reaction shift if H_{2} concentration is decreased?

6 ft
9. Consider the reaction $2 \mathrm{~N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH} 3(\mathrm{~g})$. How would reduce volume by half shift the reaction?

$$
k=\frac{[1]^{2}}{[1]^{2}[1]^{3}}
$$

$$
k=1
$$

Reducing vdome inorraces conc. since $\frac{\text { moles }}{L}=$ come.

$$
Q=\frac{[1 / 2]^{2}}{[1 / 2]^{3}[1 / 2]^{2}}=\frac{.5}{.125 \times .25}=16 \quad Q>k c
$$

10. Consider the reaction $2 \underset{(4)}{ } \mathrm{HI} \leftrightarrow \underset{(9)}{\mathrm{H}_{2}}+\underset{(7)}{\mathrm{I}_{2}}$. How would increasing the volume shift the reaction?

Reaction would not shift, equal \# of moles of gases on both sides
b. True/False: K_{p} and K_{c} are equal. Explain reasoning.

$$
\begin{aligned}
& \text { False: } K_{p} \text { and } K_{c} \text { are equal. Explain reasoning. } \\
& \text { Yes, } k_{p}=k_{c}(R N)^{\Delta n} \quad \Delta n=0 \text {, thus }(R N)^{0}=1 \\
& \text { which means } k_{p}=k_{c}
\end{aligned}
$$

which means $k p=k_{c}$
11. Consider the reaction $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \rightarrow \mathrm{CH}_{3} \mathrm{CHOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$. How would the reaction shift if $\mathrm{H}_{2} \mathrm{O}$ was evaporated so that half the volume disappeared. volume decreases by half

$$
k_{c}=\frac{[1][1]}{[1]}
$$

$$
Q=\frac{[2][2]}{2}
$$ increases conc, by 2

$Q>k_{c}$
$Q=2$
reaction shifts left
$k_{c}=1$

$$
Q=2
$$

12. Consider the reaction $\mathrm{H} 2(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g})<==>2 \mathrm{HCl}(\mathrm{g}) . \Delta \mathrm{H}=-55 \mathrm{kj} / \mathrm{mol}$. What would happen to Kc if temperature increased?
k_{c} will decrease since reaction is exothermic
13. Consider the reaction $2 \mathrm{~N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NH} 3(\mathrm{~g})$. Predict whether entropy increases or decreases when products are formed.

Decroages, there are move moles on reactant side
b. At higher temperature, which effect determines the position of equilibrium more, energy effect or entropy effect?

