CH 117 Session 5 January 31, 2014

*Note that the Equil. Constant and numbers used in the questions for this exercise were made up.

1. Write the equilibrium expression for the following reactions:

N2 (g) + 3 H2 (g) \leftrightarrow 2 NH3 (g)

LH2 [N2]

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

2. For the reaction, $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$, K_{eq} is 1.45E⁻³. What would the K_{eq} . be for $2CO(g) + 4 H_2(g) \rightleftharpoons 2CH_3OH(g)$.

b. What would the K_{eq} be for $2CH_3OH(g) \rightleftharpoons 2CO(g) + 4 H_2(g)$.

3. For the reaction \bigcirc N2 (g) + 3 H2 (g) \longleftrightarrow 2 NH3 (g), K_c is $4*10^5$. Find K_p at 400C.

b. Under what conditions would $K_p = K_c$

when moles of gas on both sides are equal

4. True or False: When Kc is greater than 1, reaction is product favored.

b. When Qc > Kc, the reaction will shift in which direction.

5. $N_2(g) + 3H_2(g) < --> 2NH_3(g)$. At equilibrium there contains 1.5 moles of N_2 , 2

5.
$$N_2(g) + 3H_2(g) < --> 2NH_3(g)$$
. At equilibrium there contains 1.5 moles of moles of H_2 , and 3 moles of NH_3 in a 1.5L container. Find K_c .

$$\frac{3}{1.5} = 2 \qquad \qquad \boxed{ [NH_3]^2 \qquad \qquad } = \qquad \boxed{ [2]^2 \qquad \qquad } = \qquad 4 \qquad = \qquad \boxed{ [NH_3]^3 [N_2] } = \boxed{ [1.33]^3 [1] } = 2.35 \times 1$$

$$\frac{1.5}{1.5} = 1 \qquad \qquad \boxed{ \frac{2}{15} = 133 }$$

6. Suppose you mix 1 M of CO and 1 M of H₂ together. What would the equilibrium

6. Suppose you mix 1 M of CO and 1 M of H₂ together. What would to concentration of all reactant and product be?
$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$
 K_c is $1.45E^{-2}$

When a paper $(1-x)$ $(1-2x)$ $(1-2x)$

7. Consider the following reaction. CO (g) + 2 H₂ (g) \rightleftharpoons CH₃OH K_c= 3.01*10⁻⁴ If you started with 1 M of CO, 1 M of H₂, and 1 M of CH₃OH, which direction would the reaction shift? Would the conc. of H₂ be greater than 1 M?

$$\frac{\left[CH_{3}OH\right]}{\left[H_{2}\right]^{2}\left[CO\right]} = Q = \frac{1}{\left[I\right]^{3}\left[I\right]} = 1$$

$$\frac{Q > Kc}{\text{Clackion shifts left}}$$

Yes, since you started with 1 M of Hz and the reaction shifts left, (Hz) will increase

8. Consider the reaction 2 N2 (g) + 3 H2 (g) $\leftarrow \rightarrow$ 2 NH3. What happens to K_{eq} when the conc. of NH₃ is decreased?

b. Which way doe the reaction shift if H₂ concentration is decreased?

9. Consider the reaction 2 N2 (g) + 3 H2 (g) $\leftarrow \rightarrow$ 2 NH3 (g). How would reduce volume by half shift the reaction?

Reducing volume increases conc. Since $\frac{\text{moles}}{L} = \text{conc.}$ $K = \frac{1}{L_1^2 L_1^3}$ $Q = \frac{1}{L_1^3 L_2^3 L_2^3} = \frac{5}{125 \times .25} = \frac{16}{L_1^3 L_2^3 L_2^3 L_2^3}$ reaction $\frac{1}{L_1^3 L_2^3 L_$

Reaction would not shift, equal # of moles of gases on

b. True/False: K_p and K_c are equal. Explain reasoning.

False:
$$K_p$$
 and K_c are equal. Explain reasoning.

 $\Delta n = 0$, thus $(RN) = 1$

which means $K_p = K_c$

11. Consider the reaction CH₃COOH + H₂O (l) $\leftarrow \rightarrow$ CH₃CHOO⁻ + H₃O⁺. How would the reaction shift if H_2O was evaporated so that half the volume disappeared. Volume decreases by half $k = \frac{[1][1]}{[1]}$ $Q = \frac{[2][2]}{2}$ $Q = \frac{[2][2]}{2}$

$$Q = \frac{2}{2} \frac{2}{2}$$

12. Consider the reaction H2(g) + Cl2(g) <==> 2HCl(g). $\Delta H= -55kj/mol$. What would happen to Kc if temperature increased?

13. Consider the reaction 2 N2 (g) + 3 H2 (g) $\leftarrow \rightarrow$ 2 NH3 (g). Predict whether entropy increases or decreases when products are formed.

b. At higher temperature, which effect determines the position of equilibrium more, energy effect or entropy effect?

cntropy