Answer Key

Session 2/ CH 117 16 Jan. 2014

1. Write the integrated rate law equation for the _____ order reaction where the rate of reaction is independent of changes in concentration.

2. The rate law expression of a reaction is Rate= $5*10^{-3} \text{ s}^{-1}$ [NO]. Find the concentration of NO at t=3 seconds if initial concentration of NO is 4 M.

3. Use the Data from the table to determine the rate law expression. $2A + B \rightarrow P$

Experiment	[A]	[B]	Initial Rate (M/s)	
1	.4	.2	2 *10-2	7
2	.4	.4	12-12-20-4	X10-0
3	.6	1.0	3*10-2	
4	.8	.2	2*10-2	

b. Using experiment 1, find k.

c. True or False. If 1/[B] is graphed as a function of time (t on x-axis), the graph would be linear.

False, It is first order so In (B) would make it linear.

d. Find concentration of B at t=2 if initial concentration of B is 5.

$$h(b) = -(k)(k) + ln(b)$$

 $ln B = -.1(2) + ln(5)$
 $ln B = 1.409 = 4.0937$

4. Reaction M has a k value of $3*10^{-2}$ s⁻¹. What is the $t_{1/2}$ of Reaction M.

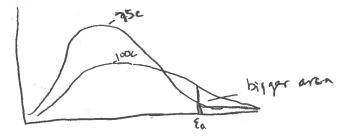
$$t_{12} = \frac{,693}{k} = \frac{.693}{(3 \times 10^{-2})}$$

b. How long would it take for [M] to be reduced to 12.5% of the initial amount. $\int_{D} (M) = -k + \int_{D} (M)^{2}$

$$ln(12.5) = -(3x10^{-2})(x) + ln(100)$$

2.53 = -3x10⁻²x + 4.605
solve for x

5. The half-life for decomposition of cyclopentene at 825 K is 241s. How long would it take for a sample of cyclopentene to decompose to 7% of the original amount.


$$241 = \frac{613}{1000} = (-2.88 \times 10^{-3})(t) + \ln(100)$$

$$K = .00288 = 1.946 = -2.88 \times 10^{-3} t + 4.605$$

$$7.88 \times 10^{-3} = 501 \text{ Jult for } t$$

6. Explain why increasing temperature increases the rate of reaction. If possible, use an energy distribution curve diagram to explain.

energy Theodel to go one en.

