1. Write the integrated rate law equation for the \qquad order reaction where the rate of reaction is independent of changes in concentration.

$$
[A]=-k t+n A_{0}
$$

2. The rate law expression of a reaction is Rate $=5^{*} 10^{-3} \mathrm{~s}^{-1}$ [NO]. Find the concentration of NO at $t=3$ seconds if initial concentration of NO is 4 M .

$$
3.94
$$

3. Use the Data from the table to determine the rate law expression.
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{P}$

Experiment	$[\mathrm{A}]$	$[\mathrm{B}]$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	.4	.2	$2^{*} 10^{-2}$
2	.4	.4	4×10^{-2}
3	.6	1.0	$3^{*} 10^{-2}$
4	.8	.2	$2^{*} 10^{-2}$

$$
\text { date }=K[B]
$$

b. Using experiment 1 , find k .

$$
\text { al } S^{-1}
$$

c. True or False. If $1 /[B]$ is graphed as a function of time (t on x-axis), the graph would be linear.

False, it is first order so $\ln (B)$ wald make it ${ }^{\prime}$ linear.
d. Find concentration of B at $t=2$ if initial concentration of B is 5 .

$$
\begin{aligned}
& \ln (B)=-(k)(t)+\ln (B) \\
& \ln B=-.1(2)+\ln (5) \\
& c^{\ln B=}=1.409=4.0937
\end{aligned}
$$

4. Reaction M has a k value of $3^{*} 10^{-2} s^{-1}$. What is the $t_{1 / 2}$ of Reaction M.

$$
t_{1 / 2}=\frac{.693}{k}=\frac{693}{\left(3 \times 10^{-2}\right)}
$$

b. How long would it take for [M] to be reduced to 12.5% of the initial amount.

$$
\begin{aligned}
\ln (M) & =-k t+\ln (M) \\
\ln (12.5) & =-\left(3 \times 10^{-2}\right)(x)+\ln (100) \\
2.53 & =-3 \times 10^{-2} x+4.605 \\
& \text { sore for } x
\end{aligned}
$$

5. The half-life for decomposition of cyclopentene at 825 K is 241 s . How long would it take for a sample of cyclopentane to decompose to 7% of the original amount.

$$
\begin{array}{rlrl}
241= & \frac{.693}{*} & \ln (A)=-k(t)+\ln (A) \\
k= & \ln (7)=\left(-2.88 \times 10^{-3}\right)(t)+\ln (100) \\
& 2.00288 & 1.946 & =-2.88 \times 10^{-3} t+4.605 \\
& \text { solve for } t
\end{array}
$$

$$
2.88 \times 10^{-3}
$$

6. Explain why increasing temperature increases the rate of reaction. If possible, use an energy distribution curve diagram to explain.
incorasing T increases Av, kinetic charge of moleales. Moo molearles have enema γ needed to 90 our qa.

